Example
Handout by Dr. George Cardwell

$$
\begin{aligned}
& \frac{d^{2}}{d+y(t)+5 \frac{d}{d t} y(t)+6 y(t)=\frac{d}{d f} f(t) f f(t)} \\
& y\left(0^{-}\right)=2, y\left(0^{-}\right)=1 \quad f(t)=e^{4 t} u(t) \\
& {\left[s^{2} y(s)-s y\left(0^{-}\right)-\dot{y}\left(0^{-}\right)\right]+5\left[s Y(s)-y\left(0^{-}\right)\right]+6 Y(s)} \\
& =\left[s F(s)-f\left(0^{-}\right)\right]+F(s) \\
& \left(s^{2}+5 s+6\right) Y(s)-(s+5) y\left(0^{-}\right)-\dot{y}\left(0^{-}\right)=(s+1) F(s)-f\left(0^{-}\right) \\
& Y(s)=\frac{s+1}{(s+2)(s+3)} F(s)+\frac{(s+5) y\left(0^{\prime}\right)+y^{2}\left(0^{2}\right)^{\prime}}{(s+2)(s+3)} \\
& F(s)=\frac{1}{s+4}
\end{aligned}
$$

$$
\begin{aligned}
y(s) & =\frac{s+1}{(s+2)(s+3)(s+4)}+\frac{2 s+1}{(s+2)(s+3)} \\
& =\frac{-1 / 2}{s+2}+\frac{-2}{s+3}+\frac{-3 / 2}{s+4}+\frac{7}{s+2}+\frac{-1}{s+3} \\
& =\frac{13 / 2}{s+2}-\frac{3}{s+3}-\frac{3 / 2}{s+4} \\
y(t) & =\left(\frac{13}{2} e^{-2 t}-3 e^{-3 t}-3 / 2 e^{-4 t}\right) u(t)
\end{aligned}
$$

$$
y(t)=\left(\frac{13}{2} e^{-2 t}-3 e^{-3 t}-\frac{3}{2} e^{-4 t}\right) u(t)
$$

As $t \rightarrow 0$ from above, that in at $t=0^{+}$

$$
\begin{aligned}
& y\left(0^{+}\right)=\left(\frac{13}{2}-\frac{6}{2}-\frac{3}{2}\right)=2 \\
& \dot{y}\left(0^{+}\right)=(-13+9+6)=2
\end{aligned}
$$

But, the initial condition at $t=0^{-}$are

$$
\begin{aligned}
& y\left(0^{-}\right)=2 \\
& \dot{y}\left(0^{\circ}\right)=1
\end{aligned}
$$

Apparently, \dot{y} changer discontinuously from 0^{-}to 0^{+}. But, it should be discontinuous. The rigft-hand side contains a δ-function

$$
\begin{aligned}
& \frac{d}{d t} f(t)+f(t)=-3 e^{-4 t} u(t)+e^{-4 t} \delta(t) \\
& \frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=\text { Tex } 3 e^{-4 t} u(t)+e^{-4 t} \delta(t)
\end{aligned}
$$

Integrate both sides from ${O^{-}}^{-}$o O^{+}, y is continuous, $\frac{d y}{d t}$ is discontinuous but finite.

$$
\int_{0^{-}}^{0^{+}} \frac{d^{2} y}{d t^{2}} d t+\int_{0}^{0^{+}} \frac{f^{0}}{d t} d t+6 \int_{0^{-}}^{t_{y}^{+}} d t=\int_{0}^{0}-3 e^{-4 t} u(t) d t+\int_{0^{-}}^{0^{0}} e^{-4 t} f(t) d t
$$

$\dot{y}\left(0^{+}\right)-\dot{y}\left(0^{-}\right)=1$ which agger with what we found above.

S-2
Note: $\int_{0^{-}}^{0+}-3 e^{-4 t} u(t) d t=\left.\frac{3}{4} e^{-4 t} u(t)\right|_{0-} ^{0 t}-\int_{0^{-}}^{0 t} \frac{3}{4} e^{-4 t} \delta(t) d t=0$

